Our group is defined by our commitment to our community principals. We strive to serve the community by discovering and developing better solutions for good health.  We are a diverse, multi-cultural inclusive group where each member of our team is recognised, accepted and embraced. We respond to the needs of our community and encourage a culture of helping others to promote effective communication and improve the sharing of scientific knowledge.

We continually examine and monitor progress via regular project and group meetings and annual performance reviews that provide the opportunity for everyone to communicate ideas, provide constructive feedback and advice and share positive experiences.

The Cooper Group is a safe and respectful workplace, where each member feels secure and valued. The University of Queensland’s comprehensive workplace safety policies provide an effective framework for a healthy and safe work environment. Our individuals accept responsibility and accountability for safe and respectful working practise.



Jobs at UQ

We are always interested to hear from researchers with a strong interest in our research programmes and who have the potential to make significant impact.   We welcome approaches from talented scientists who can construct innovative and original research programmes allied to our general research focus.   We expect that such individuals can generate support for their stay with internationally competitive fellowships such as:

All countries:

Further information



PhD Studentships
Expressions of interest from prospective postgraduate students are welcome at any time. To discuss the PhD projects detailed below please contact: info-coopergroup@imb.uq.edu.au

If you have read the project summaries below and would like to submit an expression of interest, click here to download an expression of interest form. Please apply via UQjobs link and attach your CV, cover letter and expression of interest form.

Individual supervisors will invite selected applicants to submit a full application and will provide advice about university scholarship applications at this time.

If you require information on availability of PhD places please contact Amanda Carozzi at postgrad-office@imb.uq.edu.au

For other information on student opportunities at the Intstitute for Molecular Bioscience click here.


National Grant Scheme Project Scholarships (APA)

Please visit the website for the scholarship.

We currently have projects available in the following areas:
Structural Biology / Antibiotic Mode of Action |Computer Aided Drug Design |Diagnostics & Dengue |Chemistry | Microbiology


Computer Aided Drug Design

PhD Project Name:  Predictive model and knowledge base system for antimicrobial activity

As part of the ongoing antimicrobial research, we are interested in developing a comprehensive knowledge base system for antimicrobial drug discovery, especially against Gram-negative bacteria such as E. coli, P. aeruginosa and K. pneumonia. The aim of the knowledge base system is to collect and link all information relevant for the discovery of novel antibacterial compounds, including chemical and microbiological information, using modern chemo- and bio-informatic data management and classification (ontology) system. The main aim is to use the system build comprehensive predictive models for antimicrobial activity, using various machine learning methods based on the chemical structure of a compound. The project will utilize the vast amount of in-house data generated from the many different antibacterial drug discovery projects as well as from high-through put screening campaigns specifically design for this project. These predictive models will be an integral part of our antibacterial drug discovery projects. We are looking for highly motivated candidates interested in data modeling and machine learning, data and knowledge management, as well as strong interest in chemoinformatics and bioinformatics.  


PhD Project Name: Drug delivery and Membrane penetration of Antibacterial Compounds

How and why do small molecules (drugs) penetrate bacterial membranes?

As part of the ongoing antimicrobial research, we are interested in developing a comprehensive predictive system for antimicrobial activity, especially against Gram-negative bacteria such as E. coli, P. aeruginosa and K. pneumonia. The aim of the project is to use a mechanistic approach in the development of novel compounds. Gram-negative bacteria possess an innate resistance to many of the antibacterial compound classes due to their additional outer membrane, limiting penetration and accumulation of active compounds within the bacterial cell. It is currently difficult to predict the likelihood of activity against Gram-negative bacteria, due to the lack of information on how and why compounds penetrate bacterial membranes. The aim of the project is to study the outer and inner membrane penetration of various antibacterial compounds, utilizing a vast range of different assay technologies (visualization, labeled and label-free assays, chemical analytical technologies), accessible out our facilities. We looking for high motivated candidates interested in microbiology, biochemical and biological assay development, as well as with a strong interest in the discovery of novel active compounds against bacteria, including interest in chemical analysis. 


PhD Project Name: Novel ligand based screening methods using multi-conformational information

Most drug discovery and development projects rely on ligand based virtual screening methods, in which no structural information of the target enzyme or protein is known and the selection of novel potentially active compounds is only based on a chemical information of known active (and non-active) compounds. Current ligand based methods lack or under-represent the three-dimensional spatial information of compounds. The project aims to stream line the workflow and incorporate off-target activity, pharmacokinetic property and localization prediction in the process. The aim is to optimize the ligand based screening methods for mainly cell-based and in vivo assays which require additional properties such as cell penetration, metabolic stability and low off-target activity, which are mostly ignored in current methodologies. The project will have access to a wide range of chemo/bio-informatic tool kits, statistical tool kits and workflow management systems (pipeline pilot), as well as a high-performance computer infrastructure. For this project we are looking for highly motivated candidates with an interest in computer based data modeling and molecular modeling, and an interest in novel drug discovery. The candidates will be working within multiple drug discovery projects and will require good communication skills. 

top of page


Diagnostics & Dengue

PhD Project Name: Biomimetic supported membranes on magnetic nanoparticles

Solid supported lipid bilayers are biomimetic reconstructions that can closely reproduce the natural environment of cell-membrane bound probes, thus insuring proper surface orientation, molecular arrangement and fluidity for binding. We propose to immobilize supported lipid bilayer on magnetic nanoparticles and to introduce suitable receptors on the surface to generate a library of novel probes for biosensing and biophysical studies. The major aim of the PhD project is the development of a library of functionalized supported lipid bilayers on magnetic particles and to develop novel nanotechnologies for biosensing. In addition, extensive biophysical characterization of the conjugates will provide novel insight on the mechanism of interaction with the target molecules.




PhD Project: Synthesis of anti-infective cyclic peptide drug leads and probes

Cyclic peptides are an emerging class of antibiotics that have great potential as new leads for antibacterial drugs. Previously, these products could only be obtained by from natural sources, which have limited the scope of analogues that can be produced and biologically evaluated. However, advances in synthetic methodologies has enabled our group to synthesise and screen hundreds of new cyclic peptides, as well as make probes that can be used for further studies including investigating their mode of action.

One of the peptides of interest is Bacitracin A, which is active against both Gram-positive and Gram-negative bacteria, and is used topically in ointments such as Neosporin. Two residues, D-asparagine and D-glutamic acid, are not required for antibacterial activity, so bacitracin A can be modified at these two positions with azide groups. These will be useful starting materials for generating both fluorescent probes and hybrid antibiotics via ‘click’ chemistry. The fluorescent probe(s) will be used to investigate the Bacitracin A molecular targets. Bacitracin is not used systemically due to toxicity; we will conduct structure-activity relationship studies to investigate whether it is possible to decouple toxicity from antibacterial activity. We also have other cyclic peptides and lipopeptides that would also be synthesised and biologically evaluated in this project. This project is suitable for a highly motivated student interested in synthetic / medicinal chemistry, with opportunities for extension into biochemical and microbiological assays for mode of action studies.


Click here to download an expression of interest form.

top of page